

Premier Series High Pressure Performance Piston Pumps

For Open Circuits (SAE, ISO, DIN) Catalog: HY28-2702-01/PRE/US

ENGINEERING YOUR SUCCESS.

Hydraulic Pump Division and Denison Hydraulics

The Hydraulic Pump Division of Parker Hannifin was formed in 2004 when our significant piston pump business was expanded through the acquisition of **Denison Hydraulics**. The addition of **Denison** allowed us to marry the wealth of knowledge that both companies have in the design, manufacture, and application of piston products in both open circuit and closed circuit system applications. Since before WWII, **Denison** products have been chosen for Military test stand applications and for shipboard hydraulic applications being recognized as technology leaders.

The division is a leading worldwide manufacturer of hydraulic components and systems for earthmoving and construction vehicles; for mining equipment; for pulp and paper, chemical and other processing equipment; for ships and ordnance equipment; and for such in-plant machines as machine tools, plastic molding, die casters, and stamping presses.

DENISON Hydraulics

The product information, specifications, and descriptions contained in this publication have been compiled for the use and convenience of our customers from information furnished by the manufacturer; and we can not, and do not, accept any responsibility for the accuracy or correctness of any description, calculation, specification, or information contained herein. No such description, calculation, specification, or information regarding the products being sold has been made part of the basis of the bargain, nor has same created or amounted to an express warranty that the products would conform thereto. We are selling the goods and merchandise illustrated and described on this publication on an "as is" basis, and disclaim any implied warranty, including any warranty of merchantability or warranty of fitness for any particular purpose whatsoever, with respect to the goods and merchandise sold. All manufacturer warranties shall be passed on to our customers, but we shall not be responsible for special, indirect, incidental, or consequential damages resulting from the use of any of the products or information contained or described on this publication. Further, we reserve the right to revise or otherwise make product improvements at any time without notification.

WARNING - USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

OFFER OF SALE

The items described in this document are hereby offered for sale by Parker-Hannifin Corporation, its subsidiaries or its authorized distributor. This offer and its acceptance are governed by the provisions stated in the detailed "Offer of Sale" elsewhere in this document.

© Copyright 2016, Parker Hannifin Corporation. All Rights Reserved.

Contents

Technical Data	2
Features	4
Description	5
Dimensions	6
Performance Curves	
P05/P080	10
P07/P110	12
P09/P140	14
P12/P200	16
P16/P260	18
Rear Adapters	22
Maximum Bending Moment on Premier Series Flange	
Pump Primary Disspacement Control Options	32
Secondary Control Options	
Identification Ports and Adjustments	40
Ordering Code	41
Offer of Sale	43

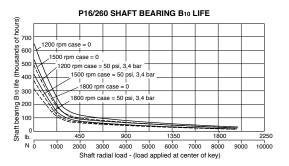
Series		Terms	P05 /080	P07 /110	P09 /140	P12 /200	P16 /260
Displacement Max	. displacement	in³/rev.	4.9	6.7	8.6	12.2	16.0
		cm³/rev.	80,3	109,8	140,9	200,0	262,2
Pressure	Continuous	psi	6000	6000	6000	6000	6000
		bar	414	414	414	414	414
	1) Intermittent	psi	7250	7250	7250	7250	7250
	· _	bar	500	500	500	500	500
Speed @ at	mospheric inlet	rpm	2550	2450	2300	2100	1850
	nax. with boost	rpm	3200	3000	2800	2700	2100*
Mounting	Flange-4 bolt	SAE	152-4 (D)	152-4 (D)	152-4 (D)	165-4 (E)	165-4 (E)
-		ISO3019/2B4HW	180	180	180	224	250
	Shaft - keyed	SAE	44-1 (D)	44-1 (D)	44-1 (D)	44-1 (E)	44-1 (E)
		ISO 3019/2	40mm	40mm	50mm	50mm	50mm
		DIN 6885	40mm	40mm	50mm	50&60mm	60mm
	Shaft - splined	SAE	44-4 (D)	44-4 (D)	44-4 (D)	44-4 (E)	44-4 (E)
		ISO 4156	40mm	40mm	50mm	50mm	50mm
		DIN 5480	40mm	40mm	50mm	50&60mm	60mm
Shaft - <i>splined</i> (Hi-To	orque P16 only)	SAE	N/A	N/A	N/A	N/A	50-4 (F)
Weight		lbs	156	177	220	300	325
Mass		kg.	71	80	100	136	147
Rotating inertia		lbs/in ²	65	92	152	245	see below
-		kg.m ²	0,019	0,027	0,044	0.072	see below
Rotating inertia	(P16/260H)	lbs/in ²	-	-	-	-	349
-	·	kg.m ²	-	-	-	-	0,102
Rotating inertia	(P16/260Q)	lbs/in ²	-	-	-	-	360
-	· · · ·	kg.m ²	-	-	-	-	0,105
Case pressure: maximum allowable	continuous	psi	25	25	25	25	25
-		bar	1,7	1,7	1,7	1,7	1,7
	intermittent	psi	50	50	50	50	50
		bar	3,4	3,4	3,4	3,4	3,4

Controls

i, 345 bar)					
sec.	0.06	0.07	0.06	0.09	0.10
sec.	0.11	0.13	0.11	0.15	0.15
psi/turn	2000	2000	2000	2000	2000
bar/turn	138	138	138	138	138
psi	250	250	250	250	250
bar	17,2	17,2	17,2	17,2	17,2
psi	800	800	700	700	700
bar	55	55	48	48	48
psi	1500	1500	1500	1500	1500
bar	103	103	103	103	103
psi	1500	1500	1050	1050	1050
bar	103	103	72,4	72,4	72,4
turns	9.0	9.3	8.1	9.5	10.2
inIbs	75	100	125	140	150
Nm	9	11	15	16	17
inIbs	175	225	275	315	350
Nm	20	25	32	36	40
degrees	47-52°	47-52°	52-57°	60-65°	65-70°
inIbs	20	20	20	20	20
Nm	2,3	2,3	2,3	2,3	2,3
	sec. sec. psi/turn bar/turn psi bar psi bar psi bar psi bar inlbs Nm degrees inlbs	sec. 0.06 sec. 0.11 psi/turn 2000 bar/turn 138 psi 250 bar 17,2 psi 800 bar 55 psi 1500 bar 103 psi 1500 bar 103 psi 1500 bar 103 psi 1500 bar 9.0 inlbs 75 Nm 9 inlbs 175 Nm 20 degrees 47-52° inlbs 20	sec. 0.06 0.07 sec. 0.11 0.13 psi/turn 2000 2000 bar/turn 138 138 psi 250 250 bar 17,2 17,2 psi 800 800 bar 55 55 psi 1500 1500 bar 103 103 psi 1500 9.3 inlbs 75 100 Nm 9 11 inlbs 175 225 Nm 20 25 degrees 47-52° 47-52° inlbs 20 20	sec. 0.06 0.07 0.06 sec. 0.11 0.13 0.11 psi/turn 2000 2000 2000 bar/turn 138 138 138 psi 250 250 250 bar 17,2 17,2 17,2 psi 800 800 700 bar 15,5 5,5 48 psi 1500 1500 1500 bar 103 103 103 psi 1500 1500 1500 bar 103 103 103 psi 1500 1500 1500 bar 103 103 103 psi 1500 1500 1500 bar 103 103 72,4 turns 9.0 9.3 8.1 inlbs 75 100 125 Nm 9 11 15 inlbs 175<	sec. 0.06 0.07 0.06 0.09 sec. 0.11 0.13 0.11 0.15 psi/turn 2000 2000 2000 2000 bar/turn 138 138 138 138 psi 250 250 250 250 bar 17,2 17,2 17,2 17,2 psi 800 800 700 700 bar 155 55 48 48 psi 1500 1500 1500 1500 bar 103 103 103 103 psi 1500 1500 1050 1050 bar 103 103 72,4 72,4 turns 9.0 9.3 8.1 9.5 inlbs 75 100 125 140 Nm 9 11 15 16 inlbs 175 225 275 315 N

*P16H, P260H only

1) 10% of operation time, not exceeding 6 consecutive seconds.

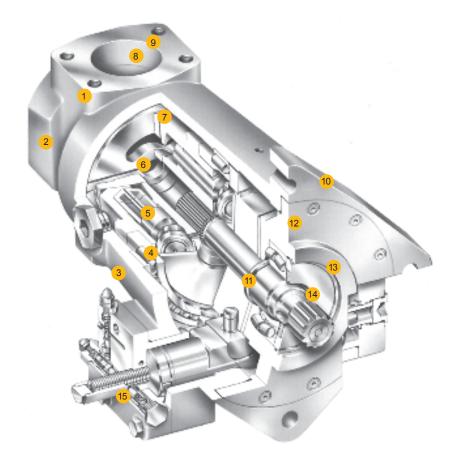


REAR DRIVE TORQUE CAPACITY


	FRONT IN	IPUT SHAFT	REAR MOUNTINGS										REAR OUTPUT SHAFT		
					SA	E		1			IS	0			
SERIES	TYPE	TORQUE CAPACITY	Α	В	С	D	E	100	125	160	180	200	224	250	TORQUE CAPACITY
P05	Keyed SAE 44-1(D)	11300 in-lbs.	•	•	•	•		•	•	•	•				5650 in-lbs.
	Spline SAE 44-4(D)	(1278 Nm)	•	•	•	•		•	•	•	•				(639 Nm)
P080	Keyed ISO 40mm		•	•	•	•		•	•	•	•				
	Keyed DIN 40mm	1292 Nm	•	•	•	•		•	•	•	•				646 Nm
	Spline ISO 40mm	(11435 in-lbs.)	•	٠	٠	•		•	•	٠	٠				(5718 in-lbs.)
	Spline DIN 40mm		•	•	•	•		•	•	•	٠				
P07	Keyed SAE 44-1(D)	15924 in-lbs.	•	•	•	•		•	•	•	•				7962 in-lbs.
	Spline SAE 44-4(D)	(1800 Nm)	٠	•	•	•		•	٠	٠	٠				(900 Nm)
P110	Keyed ISO 40mm		•	•	•	•		•	•	•	•				
i i	Spline ISO 40mm	1800 Nm	•	•	•	•		•	•	•	•				900 Nm
	Keyed DIN 40mm	(15924 in-lbs.)	•	•	•	•		•	•	•	•				(7962 in-lbs.)
	Spline DIN 40mm		٠	•	•	•		•	٠	٠	٠				
P09	Keyed SAE 44-1(D)		•	•	•	•		•	•	•	٠				9900 in-lbs.
	Spline SAE 44-4(D)	(2237 Nm)	•	•	•	٠		•	٠	٠	٠				(1118 Nm)
P140	Keyed ISO 50mm		•	•	•	•		•	•	•	•				
	Spline ISO 50mm	2237 Nm	•	•	•	•		•	•	•	•				1118 Nm
	Keyed DIN 50mm	(19800 in-lbs.)	•	•	•	•		•	•	•	•				(9900 in-lbs.)
	Spline DIN 50mm		•	•	•	•		•	•	•	٠				
P12		2288 Nm (20250 in-lbs)	•	•	•	•	•	•	•	•	•	•	•		13800 in-lbs.
		2825 Nm (25000 in-lbs)	•	•	•	•	•	•	•	•	•	•	•		(1559 Nm)
P200	Keyed ISO 50mm	2288 Nm (20250 in-lbs)	•	•	•	•	•	•	•	•	•	•	•		
	Spline ISO 50mm	3163 Nm (27996 in-lbs)	•	•	•	•	•	•	•	•	•	•	•		1559 Nm
	Keyed DIN 50mm	2288 Nm (20250 in-lbs)	•	•	•	•	•	•	•	•	•	•	•		(13800 in-lbs.)
	Spline DIN 50mm	3163 Nm (27994 in-lbs)	•	•	•	•	•	•	•	•	•	•	•		
	Keyed DIN 60mm	2288 Nm (20250 in-lbs)	•	•	•	•	•	•	•	•	•	•	•		
P16	Spline DIN 60mm	4384 Nm (38800 in-lbs) 20250 in-lbs.	•	•	•	•	•	•	•	•	•	•	•		13600 in-lbs.
P16	Keyed SAE 44-1(E)		•	•	•	•	•	•	•	•	•	•	•	•	
	Spline SAE 44-4(E)	(2288 Nm) 25000 in-lbs.													(1537 Nm) 13600 in-lbs.
	Spline SAE 44-4(E)	(2825 Nm)	•	•	•	•	•	•	•	•	•	•	•	•	
	Spline SAE 50-4(F)	38800 in-lbs.	•	•	•	•		-	-	•	•	•	•	•	(1537 Nm) 19400 in-lbs.
	Spine SAE 50-4(F)	(4384 Nm)	•	•	•	•	•		•	•	•	•	•	•	(2192 Nm)
P260	Keyed ISO 50mm	2288 Nm (20250 in-lbs)	-	-	-	-	•	-	-	-	-	-	-	-	(2192 NIII) 1537 Nm (13600 in-lbs)
F200	Spline ISO 50mm	4384 Nm (38800 in-lbs)	:			-	-			:		:		-	2192 Nm (19400 in-lbs)
	Keyed DIN 60mm	2288 Nm (20250 in-lbs)				-	-							-	1537 Nm (13600 in-lbs)
	Spline DIN 60mm	4384 Nm (38800 in-lbs)	:	-			-					-		:	2192 Nm (19400 in-lbs)
			•	•	•	•	•		•	•	•	•	•	•	2132 NIII (19400 IN-105)

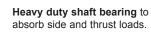
SHAFT BEARING LIFE

P05/080 and P07/110 SHAFT BEARING B10 LIFE 1200 rpm case = 0 ,1500 rpm case = 0 1200 rpm case = 50 psi, 3,4 bar ___ 1500 rpm case = 50 psi, 3,4 bar | | _ 1800 rpm case = 0 -50 1800 rpm case = 50 psi, 3,4 bar lb. 295 900 450 675 1125 Nб 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Shaft radial load - (load applied at center of key)



P09/140 and P12/200 SHAFT BEARING B10 LIFE

- Highest rated pressure of any comparable pump available in the market place today.
- Full power through drive capability allows two (2) pumps of the same displacement to be run in tandem at full rated pressure and flow, simultaneously.


Fast, compensator response minimizes pressure overshoot. Two stage, pilot operated compensator provides sharp pressure cutoff at compensator setting, typically regulating pressure within 50 psi (3.5 bar). Compensator may easily be remotely controlled or used in load sensing circuits.

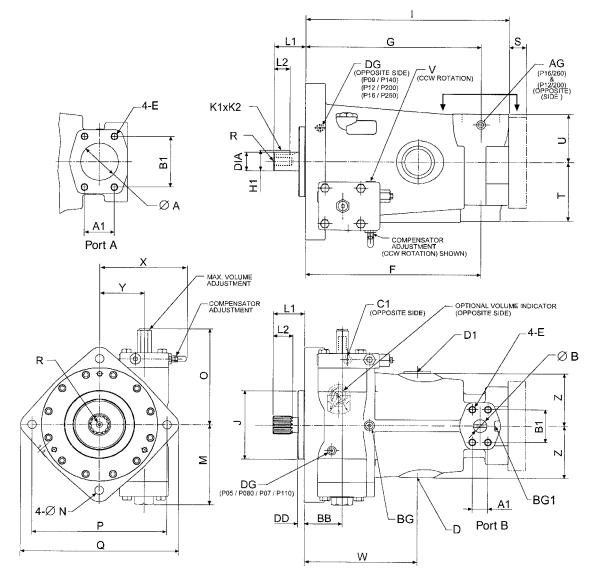
Precision barrel bearing absorbs radial forces, allowing longer operation at higher pressure and higher speeds.

Piston design minimizes trapped oil volume to maximize efficiency. Angled barrel ports reduce the piston circle diameter, which allows oil to enter at reduced velocity. This allows the pump to run faster, with atmospheric inlet pressure.

6

- Spherical port plate and barrel face provides support to barrel to offset forces from angled ports.
- Large suction port reduces inlet flow velocity to allow the pumps to run at higher speeds with atmospheric inlet.
- 9 Standard SAE split flange with inch or metric bolts, depending on pump version (SAE or metric).
- Conforms to SAE or ISO mounting standards.
- 11 Damped low inertia rocker cam allows very quick compensation, resulting in more stable and quieter pump.

13


- High pressure shaft seal allows higher case pressure without external leakage. Note: it is always advisable to maintain the lowest possible case pressure.
- 14 Drive shaft options include keyed or splined in SAE, ISO and DIN.

Optional controls A wide variety of optional controls are available and are designed with simplicity and a maximum of common elements.

GENERAL	The open loop Premier Series pumps are variable displacement piston pumps with emphasis on superior design with few maintenance requirements. Low inlet velocity requirements allow the pumps to run faster than competitive models without the added expense of boosting the inlet. Modified pistons that reduce the amount of trapped fluid volume result in improved effi- ciency.
	The Premier Series pumps have been designed to operate in a wide range of industries where variable flow, high pressure and/or high speeds are required; such as: presses, construction machinery, injection molding, wood, aircraft, drilling, mining, steel and cranes.
MOUNTING	This pump is designed to operate in any position. For vertical mounting with shaft upward, it is recommended that a 5 psi (0,3 bar) check valve be installed in the case drain port and that the air bleed port (DG on page 36) be connected to the reservoir in order to circulate oil past the shaft bearing. The mounting hub and four bolt mounting flange are in full conformance with SAE/ISO standards. The pump shaft must be in alignment with the shaft of the source driver and should be checked with a dial indicator. The mating pilot bore and coupling must be concentric.
INPUT SHAFT INFORMATION	Splined: The shafts must be aligned within a max. 0.006", 0,15 mm TIR relative to pilot diameter. Angular misalignment at the external and internal spline axis must be less than \pm .002" per inch, .002 mm per mm radius relative to pilot face. The coupling interface must be lubricated. Parker recommends lithium molydisulfide or similar grease. The internal coupling should be hardened to 27-34 Rc. and must conform to SAE J498B (1971) class 1 flat root side fit, ISO 4156 and DIN 5480.
	Keyed: High strength heat treated keys must be used. Replacement keys must be hardened to 27-34 Rc. The key corners must be chamfered .030"040", 075 - 1 mm at 45° to clear radii that exist in the keyway. If a flexible coupling is not used, the alignment of keyed shafts must be within tolerances given for splined shafts.
CASE PRESSURE/PLUMBING	The case drain line should be as large as the drain port on the pump. The return to the reservoir must be below the surface of the oil and as far from the suction as possible.
	The maximum case pressure is 25 psi (1,7 bar) continuous, 50 psi (3,4 bar) intermittent. Case pressure must never exceed inlet pressure by more than 25 psi (1,7 bar).
	When connecting the case drain line, make certain that the drain plumbing passes above the highest point of the pump before returning to the reservoir. If not, install a 5 psi, 0,3 bar case pressure check valve to ensure the case is filled with oil at all times.
	All fluid lines, whether pipe, tubing, or hose, must be of adequate size and strength to assure proper operation.
	Caution: Do not use galvanized pipe. The coating can flake off with continued use.
MAINTENANCE & SERVICE	Make sure the entire hydraulic system is free of dirt, lint, or other foreign material. This pump is self-lubricating and preventative maintenance is limited to keeping system fluid clean. Do not operate at pressures and speeds in excess of the recommended limit.
	For spare parts, reference document numbers, use spare parts manual number HY28-2700-03/PRE/US.
RECOMMENDED FLUIDS	Contact tech support at: pumptechsupport@parker.com
TEMPERATURE	Maximum temperature is limited by the viscosity characteristics of the fluid used. Because high temperatures degrade seals, reduce the service life of the fluid, and create hazards, fluid temperatures should not exceed 180_{\circ} F, 82° C at the case drain.
FLUID CLEANLINESS	Fluid must be cleaned before adding to the system, and continuously during operation by filters that maintain a cleanliness level of ISO 20/17/14 or better.

CCW PUMP

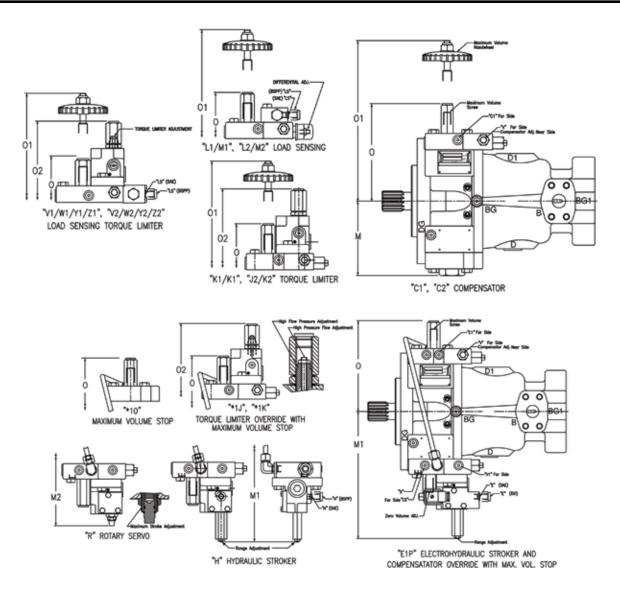
Dimensions

	F	G	I -w/o*	I -w**	J	M	N	0	Р	Q
P05	11.36	11.60	13.76	13.40	6.000-5.998	6.23	Ø .81	8.18	9.00	10.50
P080	288,5	294,6	349,5	340,4	180,0-179,93	158,2	Ø 18,0	207,8	224,0	266,7
P07	11.89	12.41	14.89	14.71	6.000-5.998	6.26	Ø .81	8.22	9.00	10.50
P110	302,0	315,2	378,2	373,6	180,0-179,93	159,2	Ø 18,0	208,8	224,0	266,7
P09	13.24	13.66	16.09	15.91	6.000-5.998	6.79	Ø .81	8.72	9.00	11.9
P140	336,2	347,0	408,7	404,1	180,0-179,93	172,3	Ø 18,0	221,5	224,0	302,2
P12	14.11	14.79	17.26	17.15	6.500-6.498	6.92	Ø .81	8.85	12.50	14.8
P200	358,4	375,7	438,4	435,6	224,00-223,95	175,8	Ø 22,	224,8	280,0	376,0
P16	16.3	16.3	19.02	18.75	6.500-6.498	7.27	Ø .81	9.11	12.50	14.66
P260	420,1	420,1	489,2	482,3	250,00-249,96	184,8	Ø 25,4	231,3	315,0	372,4

* Without reardrive

** With reardrive

Items in **bold** are SAE version and inches. Items not bold are ISO version and millimeters in *italics*. NOTE: For port identification see page 40.


᠈ᡔ᠋ᢩ᠂ᢩ᠘

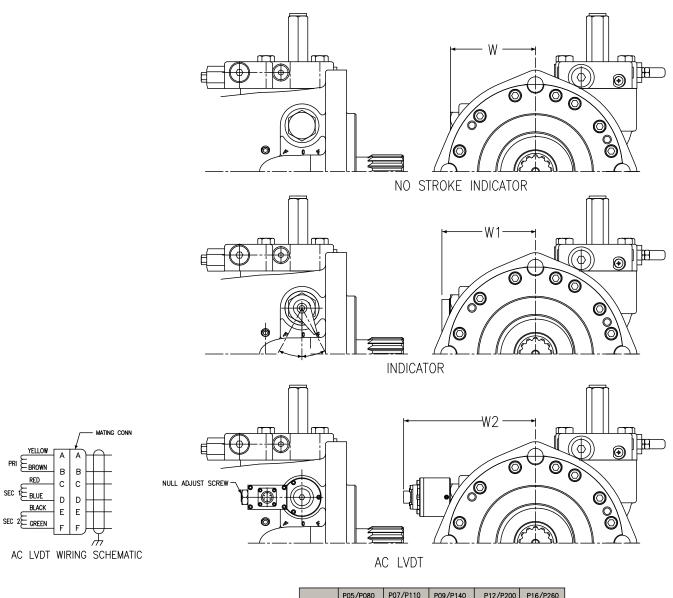
code	Shafts	Pumps	05	080	07	110	09	140	12	200	16	260	L1	L2	DIA	K1 x K2	H1	R
	Keyed SAE44-1	(D&E)	•		٠		٠	•		•			2.94	1.50	1.7500-1.7494	7/16	1.943	3/8-16 x.65
02	Keyed ISO 3019	/2 40mm		•		•		•					92	63	40,018-40,002	12 x 8	42,9	M12 x 28
	Keyed ISO 3019	/2 50mm						•		•		•	92	38	50,018-50,002	14 x 9	53,4	M10 x 16.5
	Keyed DIN 6885	40mm		٠		٠							80	63	40,018-40,002	12 x 8	42,9	M12 x 28
06	Keyed DIN 6885	50mm						•		•			92	70	50,018-50,002	14 x 9	53,4	M16 x 32
	Keyed DIN 6885	60mm								•		•	113	100	60,000-60,02	18 x 11	64,0	M20 x 42
	Splined SAE44-4 (D)		•		٠		•						2.94	1.62	side fit, 30º, cl	ass 1, 8/16p,	,13 teeth	3/8-16 x.65
	Splined SAE44-	4 (E)							•		•		2.94	1.50	0 side fit, 30°, class 1, 8/16p,13 teeth			3/8-16 x.65
03	Splined ISO 415	6 40mm		•		•		•					92	53	side fit, 30º, m	od.1,0 - 39 te	eeth	M10 x 16.5
	Splined ISO 415	6 50mm						•		•		•	92	53	side fit, 30° , m	od.2,5 -19 te	eth	M10 x 16.5
	Splined DIN 548	0 40mm		•		•							55	30	side fit, 30° , m	od.2,0 -18 te	eth	M12 x 28
07	Splined DIN 548	0 50mm						•		•			65	40	side fit, 30° , m	od.2,0 -24 te	eth	M16 x 32
	Splined DIN 548	0 60mm								•		•	66	47	side fit, 30°, mo	od.2,0 - 28 te	eth	M20 x 42
05	Splined SAE 50	-4 (F)									•		3.44	2.21	side fit, 30º, cla	ass 1, 8/16p,	15 teeth	3/8-16 x.65
	Hi-Torque																	

			Dimens	ions		Threads				Ports			
Por	ts	Ø A/B	A1	B1	T/U	E	v	D/D1	AG	BG	BG1	C1	DG
P05	Α	2.50	2.00	3.50	4.37	1/2-13 x 1.19	SAE - 8	SAE - 12	SAE - 4	SAE - 4	SAE - 6	SAE - 4	SAE - 4
	в	1.25	1.25	2.63	4.37	1/2-13 x 1.19							
P080	Α	64	50,8	88,9	111,1	M12 x 30,2	3/8 BSPP	3/4 BSPP	1/4 BSPP	1/4 BSPP	1/4 BSPP	1/4 BSPP	3/8 BSPP
	В	32	31,8	66,7	111,1	M14 x 50							
P07	Α	3.00	2.44	4.19	4.37	5/8-11 x 1.19	SAE - 8	SAE - 16	SAE - 4	SAE - 6	SAE - 6	SAE - 4	SAE - 4
	В	1.25	1.25	2.63	4.52	1/2-13 x 1.19							
P110	Α	76	61,9	106,4	111,1	M16 x 38,1	3/8 BSPP	1 BSPP	1/4 BSPP	1/4 BSPP	1/4 BSPP	1/4 BSPP	1/4 BSPP
	в	32	31,8	66,7	114,9	M14 x 50							
P09	Α	3.00	2.44	4.19	4.50	5/8-11 x 1.50	SAE - 8	SAE - 20	SAE - 4	SAE - 4	SAE - 6	SAE - 4	SAE - 4
	В	1.50	1.44	3.13	4.83	5/8-11 x 1.50							
P140	Α	76	61,9	106,4	114,3	M16 x 38,1	3/8 BSPP	1-1/2 BSPP	1/4 BSPP	1/4 BSPP	1/4 BSPP	1/4 BSPP	1/8 BSPP
	в	38	36,5	79,37	122,7	M16 x 38,1							
P12	Α	3.50	2.76	4.75	4.50	5/8-11 x 1.38	SAE - 8	SAE - 24	SAE - 4	SAE - 6	SAE - 6	SAE - 4	SAE - 4
	в	1.50	1.44	3.13	5,37	5/8-11 x 1.50							
P200	Α	89	70,0	120,65	114,3	M16 x 38,1	3/8 BSPP	1-1/2 BSPP	1/4 BSPP				
	в	38	36,5	79,37	136,4								
P16	Α	3.50	2.76	4.75	4.50	5/8-11 x 1.38	SAE - 8	SAE - 24	SAE - 4	SAE - 6	SAE - 6	SAE - 4	SAE - 4
	В	1.50	1.44	3.13	5.50	5/8-11 x 1.38							
P260	Α	89	70,0	120,65	114,3	M16 x 38,1	3/8 BSPP	1-1/2 BSPP	1/4 BSPP				
	в	38	36,5	79,37	146,0	M16 x 38,1							

NOTE: For port identification see page 40.

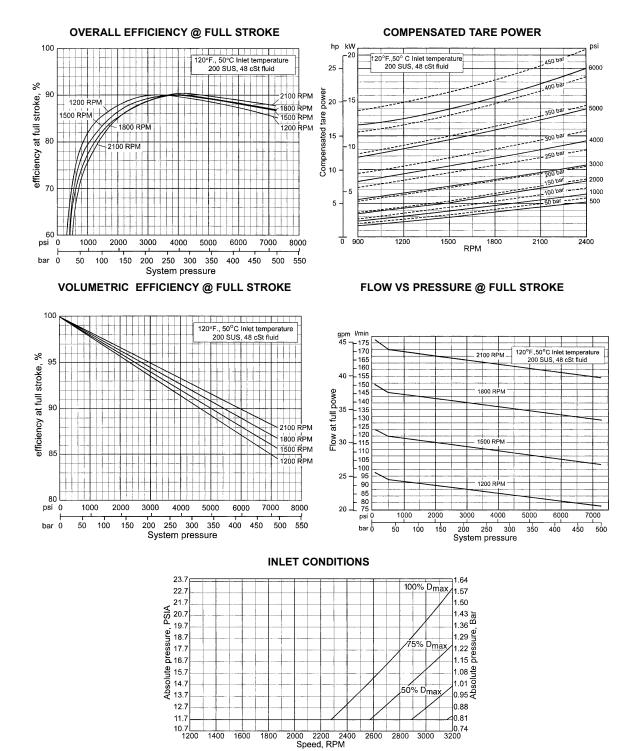
COUNTER-CLOCKWISE ROTATION SHOWN

For clockwise rotation, the top and bottom control caps are interchanged.

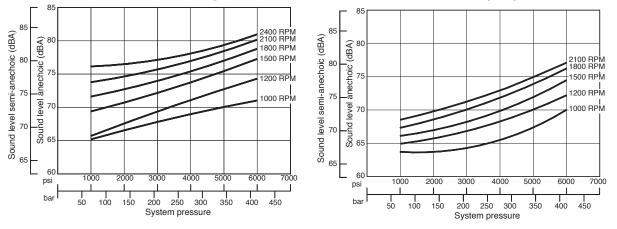

	"C1"	"C2"	"E"	"H"	"R"	"V"	"V1"	"X"	M	M1	M2	0	01	02
P05	SAE-4	SAE-4	SAE-4	SAE-4	SAE-4	SAE-8	SAE-4	SAE-6	6.23	10.09	9.87	8.16	13.44	11.08
P080	1/4" BSPP	3/8" BSPP	1/4" BSPP	3/8" BSPP	158,2	256,2	250,8	207,3	341,3	281,4				
P07	SAE-4	SAE-4	SAE-4	SAE-4	SAE-4	SAE-8	SAE-4	SAE-6	6.26	10.15	9.93	8.22	13.48	11.14
P110	1/4" BSPP	3/8" BSPP	1/4" BSPP	3/8" BSPP	159,2	257,8	252,4	208,8	342,4	282,9				
P09	SAE-4	SAE-4	SAE-4	SAE-4	SAE-4	SAE-8	SAE-4	SAE-8	6.79	12.21	10.63	8.72	14.19	11.84
P140	1/4" BSPP	3/8" BSPP	1/4" BSPP	3/8" BSPP	172,3	310,1	270,0	221,5	360,4	300,7				
P12	SAE-4	SAE-4	SAE-4	SAE-4	SAE-4	SAE-8	SAE-4	SAE-8	6.92	12.34	10.76	8.85	14.32	11.97
P200	1/4" BSPP	3/8" BSPP	1/4" BSPP	3/8" BSPP	175,8	313,4	273,3	224,8	363,7	304,0				
P16	SAE-4	SAE-4	SAE-4	SAE-4	SAE-4	SAE-8	SAE-4	SAE-8	7.29	12.6	11.02	9.11	14.58	12.23
P260	1/4" BSPP	3/8" BSPP	1/4" BSPP	3/8" BSPP	185,2	320	279,9	231,4	370,3	310,6				

Items in **bold** are SAE version and inches.

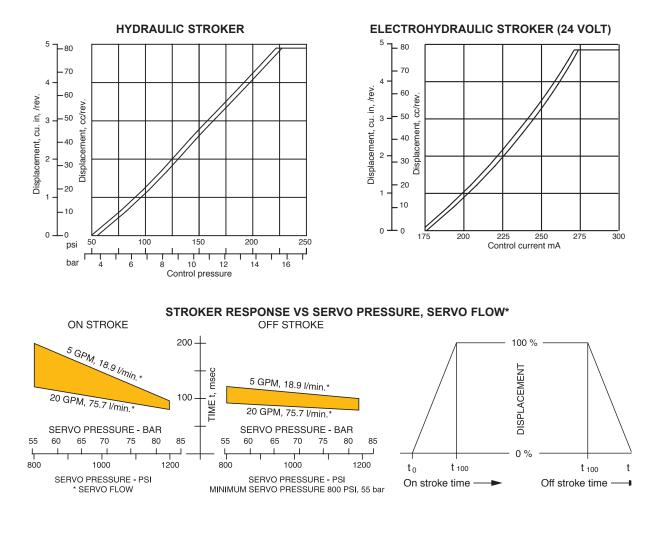
Italic dimensions are in millimeters.


NOTE: For more detail informance refer to the individual pump installation drawings. These are available on CD Contact your nearest sales representative or distributor.

		P05/P080	P07/P110	P09/P140	P12/P200	P16/P260
[W	4.25/(107,8)	4.41/(111,9)	5.07/(128,7)	4.90/(124,4)	5.07/(128,7)
ſ	W1	4.68/(118,9)	4.84/(123,0)	5.50/(139,8)	5.33/(135,5)	5.50/(139,8)
[W2	6.66/(169,3)	6.82/(173,3)	6.89/(175,1)	7.31/(185,8)	7.48/(190,1)



Note: The absolute inlet pressure is the pressure required to fill the pump with petroleum based fluids. The maximum pressure in the inlet port is 200 psi, 14 bar. For unboosted systems, the diameter of the suction line must be sized to allow a maximum velocity not higher than 4 ft/sec., 1,22 m/sec. A coarse screen may be considered in the suction line, no filter. For water in oil invert emulsions and water glycols increase the inlet absolute pressure by 25%, for phosphate ester increase the absolute inlet pressure by 35%. Any inlet pressures above atmospheric may increase noise levels and decrease efficiencies noted in this literature. Please consult your nearest Parker Office for further details.



SOUND PRESSURE LEVEL (dBA) @ FULL STROKE

SOUND PRESSURE LEVEL (dBA) COMPENSATED

Note: Pump acoustical data was determined in accordance with ANSI/B93.71M, Hydraulic Fluid Power Pumps test code for the determination of airborne noise levels. Semi-anechoic values are presented according to the standard. Anechoic values are calculated for comparison with DIN 45635, part 1. The DIN standards measures sound levels over different surface areas so comparisons are not exact.

1200 RPM

1000

100 150 200 250 300 350

50

1800 R 100 RPM

2000

3000

4000

System pressure

5000

6000

400

1500 RPM

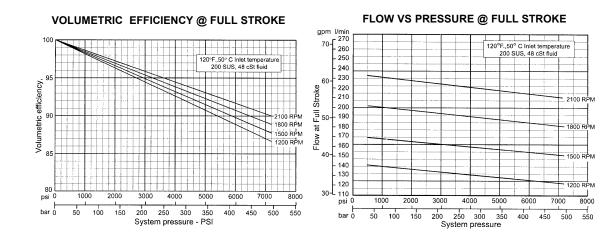
100

%

90

80

70 psi


bar 🖞

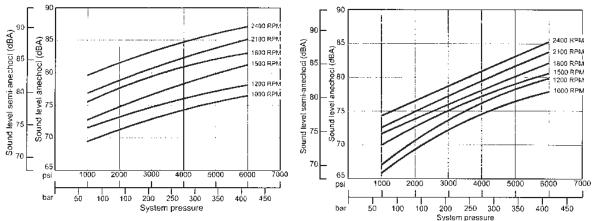
Overall efficiency,


OVERALL EFFICIENCY @ FULL STROKE

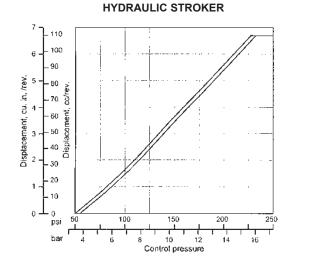
OVERALL EFFICIENCY @ FULL STROKE

COMPENSATED TARE POWER kW r 30 hp 40 120 F F°., 50° C. Inlet temperature 200 SUS, 48 cSt fluid 450 bar 6000 35 25 120°F. 50° C Inlet temperature 450 bar - - -200 SUS, 48 cSt fluid COMPENSATED TARE POWER 0 21 05 57 00 0 01 20 450 bar - - - -5000 2100 RPM 1800 RPM 1500 RPM 1200 RPM 100 F 450 bar 15 ---000 450 bar 10 - - -3000 450 bar 450 bar-2000 5 450 bar _ _ _ - - -5 1000 500 450 bar ----7000 8000 ō 550 1200 1500 1800 2100 2400 450 500 RPM

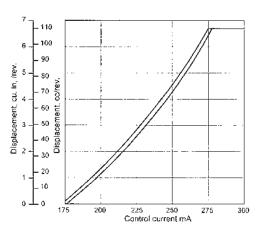
INLET CONDITIONS

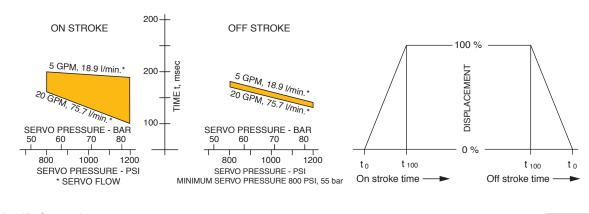


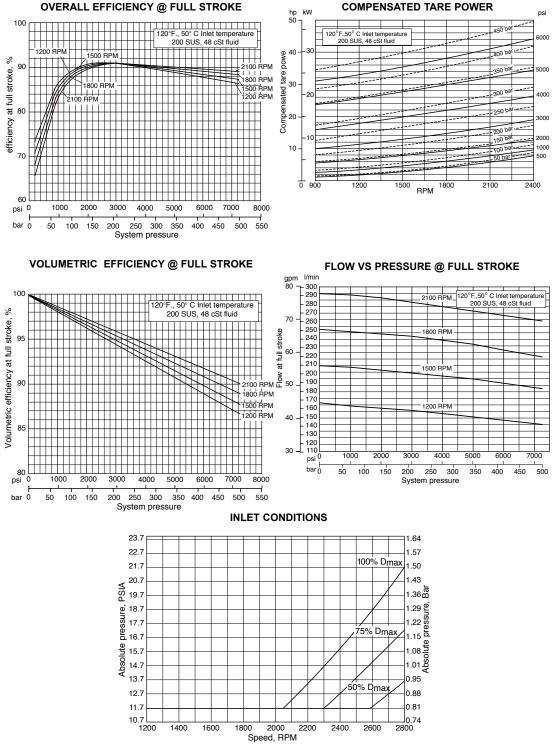
Note: The absolute inlet pressure is the pressure required to fill the pump with petroleum based fluids. The maximum pressure in the inlet port is 200 psi, 14 bar. For unboosted systems, the diameter of the suction line must be sized to allow a maximum velocity not higher than 4 ft/sec., 1,22 m/sec. A coarse screen may be considered in the suction line, no filter. For water in oil invert emulsions and water glycols increase the inlet absolute pressure by 25%, for phosphate ester increase the absolute inlet pressure by 35%. Any inlet pressures above atmospheric may increase noise levels and decrease efficiencies noted in this literature. Please consult your nearest Parker Office for further details.



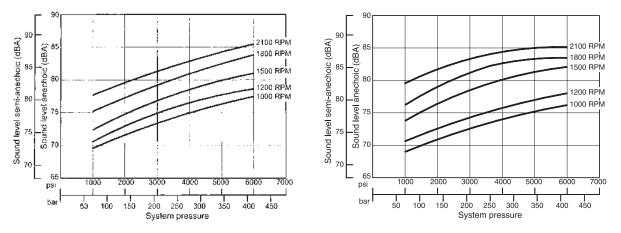
SOUND PRESSURE LEVEL (dBA) @ FULL STROKE


SOUND PRESSURE LEVEL (dBA) COMPENSATED

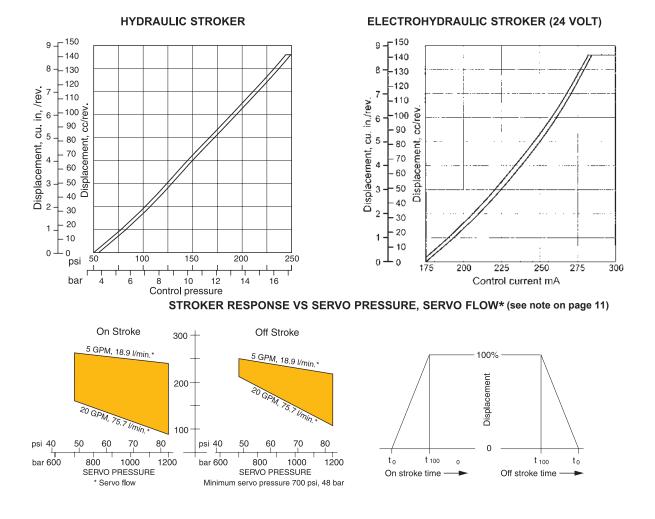

Note: Pump acoustical data was determined in accordance with ANSI/B93.71M, Hydraulic Fluid Power Pumps test code for the determination of airborne noise levels. Semi-anechoic values are presented according to the standard. Anechoic values are calculated for comparison with DIN 45635, part 1. The DIN standards measures sound levels over different surface areas so comparisons are not exact.


ELECTROHYDRAULIC STROKER (24 VOLT)

STROKER RESPONSE VS SERVO PRESSURE, SERVO FLOW* (see note on page 11)

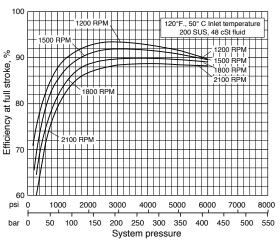


Note: The absolute inlet pressure is the pressure required to fill the pump with petroleum based fluids. The maximum pressure in the inlet port is 200 psi, 14 bar. For unboosted systems, the diameter of the suction line must be sized to allow a maximum velocity not higher than 4 ft/sec., 1,22 m/sec. A coarse screen may be considered in the suction line, no filter. For water in oil invert emulsions and water glycols increase the inlet absolute pressure by 25%, for phosphate ester increase the absolute inlet pressure by 35%. Any inlet pressures above atmospheric may increase noise levels and decrease efficiencies noted in this literature. Please consult your nearest Parker Office for further details.

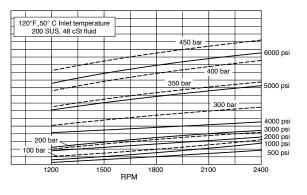


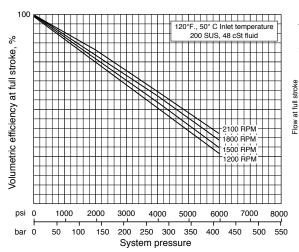
SOUND PRESSURE LEVEL (dBA) @ FULL STROKE

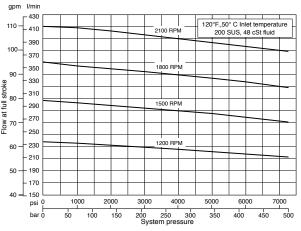
SOUND PRESSURE LEVEL (dBA) COMPENSATED

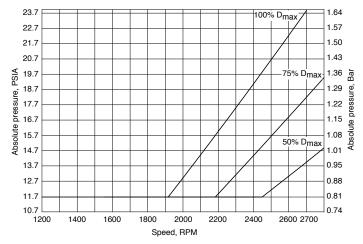


Note: Pump acoustical data was determined in accordance with ANSI/B93.71M, Hydraulic Fluid Power Pumps test code for the determination of airborne noise levels. Semi-anechoic values are presented according to the standard. Anechoic values are calculated for comparison with DIN 45635, part 1. The DIN standards measures sound levels over different surface areas so comparisons are not exact.

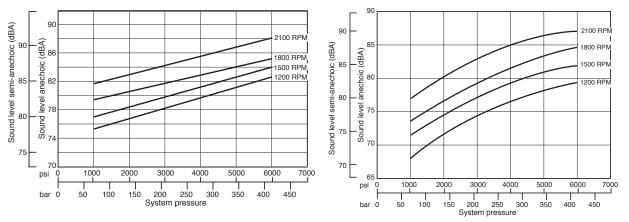


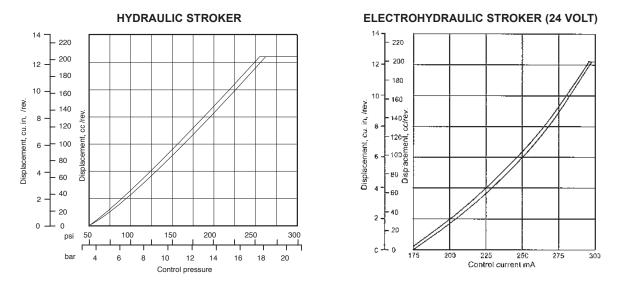

OVERALL EFFICIENCY @ FULL STROKE


COMPENSATED TARE POWER

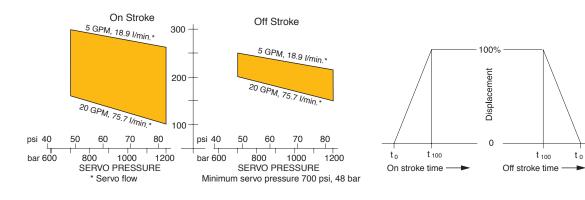

VOLUMETRIC EFFICIENCY @ FULL STROKE

FLOW VS PRESSURE @ FULL STROKE

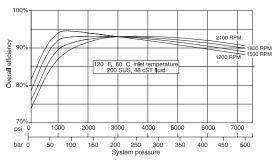

INLET CONDITIONS


Note: The absolute inlet pressure is the pressure required to fill the pump with petroleum based fluids. The maximum pressure in the inlet port is 200 psi, 14 bar. For unboosted systems, the diameter of the suction line must be sized to allow a maximum velocity not higher than 4 ft/sec., 1,22 m/sec. A coarse screen may be considered in the suction line, no filter. For water in oil invert emulsions and water glycols increase the inlet absolute pressure by 25%, for phosphate ester increase the absolute inlet pressure by 35%. Any inlet pressures above atmospheric may increase noise levels and decrease efficiencies noted in this literature. Please consult your nearest Parker Office for further details.

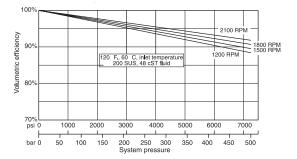
SOUND PRESSURE LEVEL (dBA) @ FULL STROKE

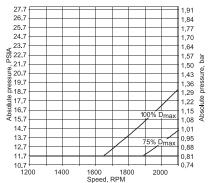

SOUND PRESSURE LEVEL (dBA) COMPENSATED

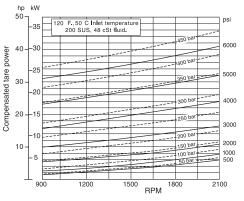
Note: Pump acoustical data was determined in accordance with ANSI/B93.71M, Hydraulic Fluid Power Pumps test code for the determination of airborne noise levels. Semi-anechoic values are presented according to the standard. Anechoic values are calculated for comparison with DIN 45635, part 1. The DIN standards measures sound levels over different surface areas so comparisons are not exact.

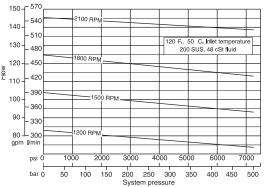


STROKER RESPONSE VS SERVO PRESSURE, SERVO FLOW* (see note on page 11)

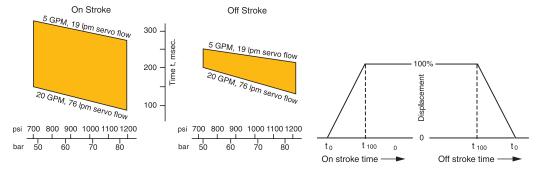



OVERALL EFFICIENCY @ FULL STROKE

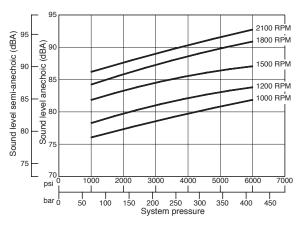

VOLUMETRIC EFFICIENCY @ FULL STROKE

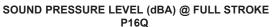

INLET CONDITIONS

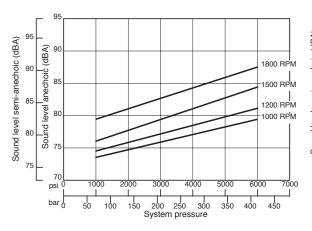
COMPENSATED TARE POWER

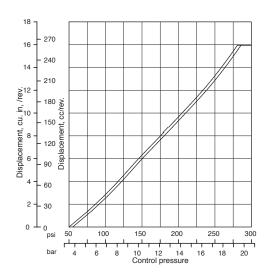


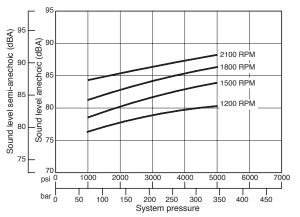
FLOW VS PRESSURE @ FULL STROKE

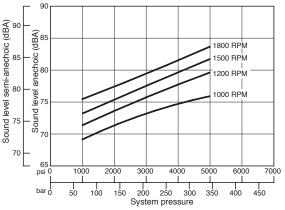

Note: The absolute inlet pressure is the pressure required to fill the pump with petroleum based fluids. The maximum pressure in the inlet port is 200 psi, 14 bar. For unboosted systems, the diameter of the suction line must be sized to allow a maximum velocity not higher than 4 ft/sec., 1,22 m/sec. A coarse screen may be considered in the suction line, no filter. For water in oil invert emulsions and water glycols increase the inlet absolute pressure by 25%, for phosphate ester increase the absolute inlet pressure by 35%. Any inlet pressures above atmospheric may increase noise levels and decrease efficiencies noted in this literature. Please consult your nearest Parker Office for further details.

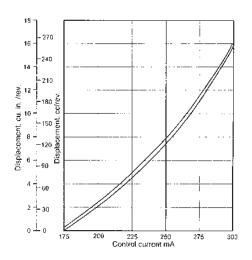

STROKER RESPONSE VS SERVO PRESSURE, SERVO FLOW* (see note on page 11)




SOUND PRESSURE LEVEL (dBA) @ FULL STROKE P16 H

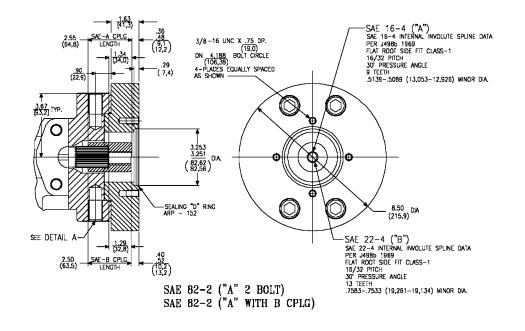


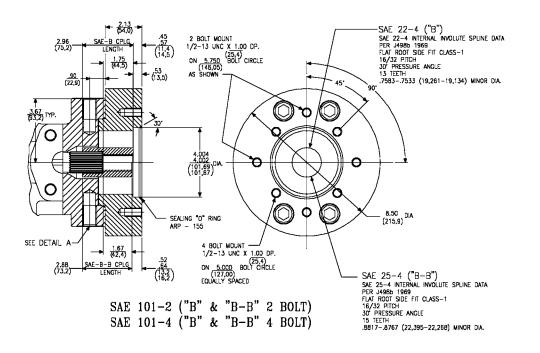

HYDRAULIC STROKER

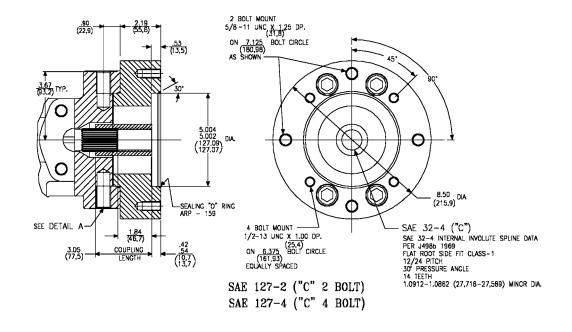

SOUND PRESSURE LEVEL (dBA) COMPENSATED P16H

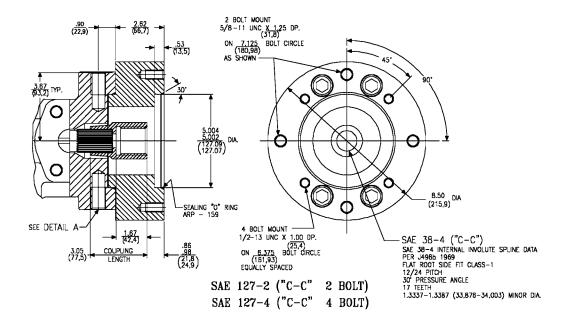
SOUND PRESSURE LEVEL (dBA) COMPENSATED P16Q

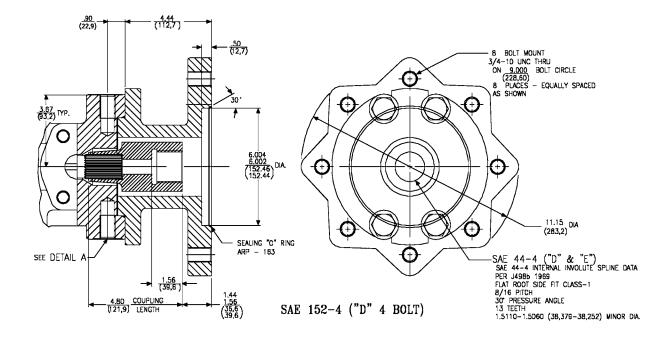
ELECTROHYDRAULIC STROKER (24 VOLT)

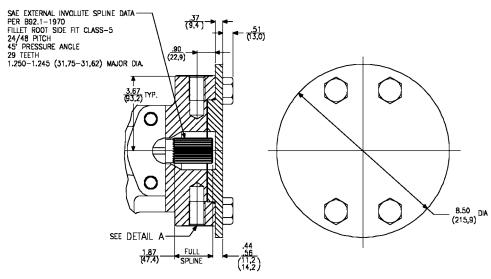


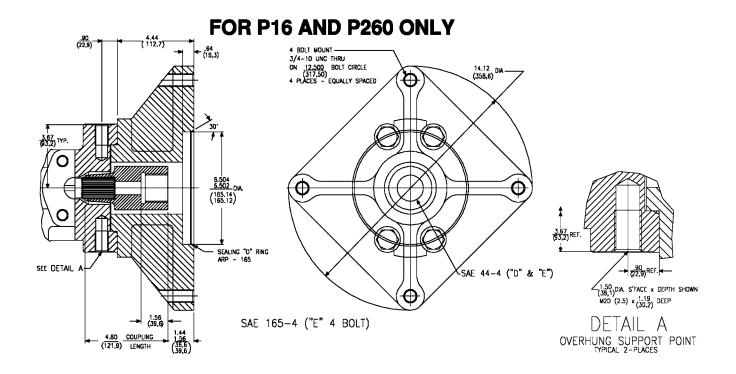


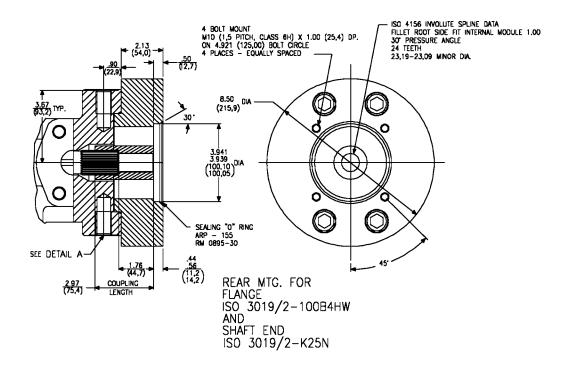


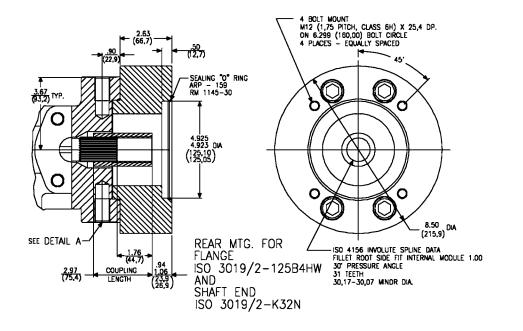

SAE REAR AUX. MTG. ADAPTORS FOR ALL PREMIER SERIES SAE

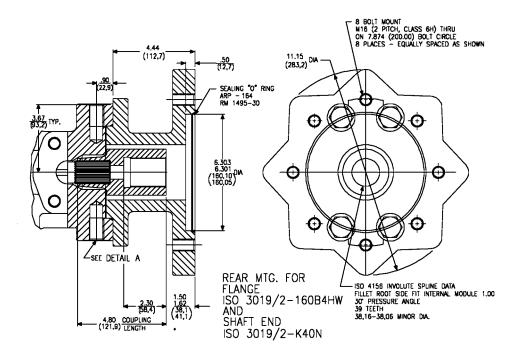


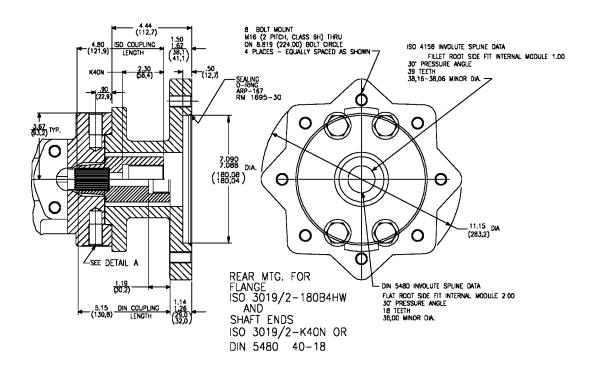


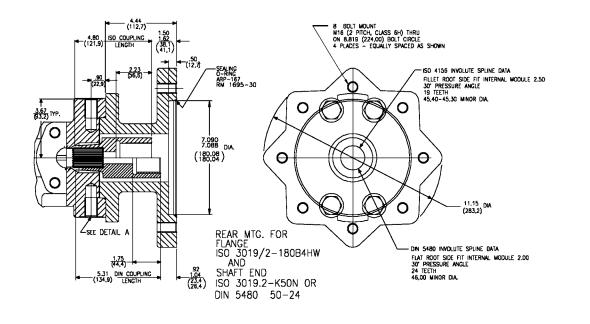


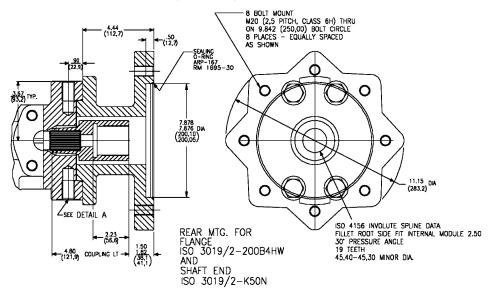



SAE REAR AUX. MTG. ADAPTORS FOR ALL PREMIER SERIES SAE

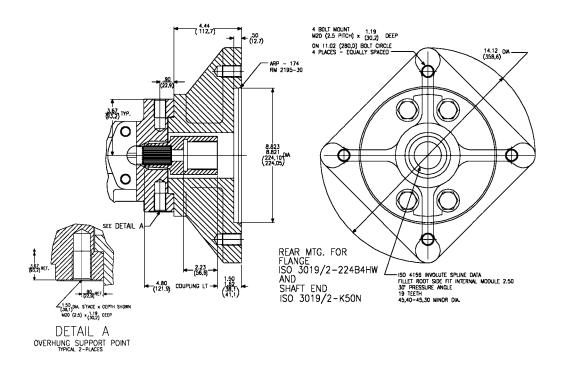

ISO REAR AUX. MTG. ADAPTORS FOR ALL PREMIER SERIES ISO

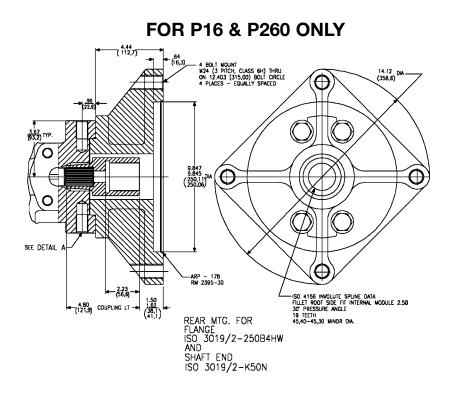




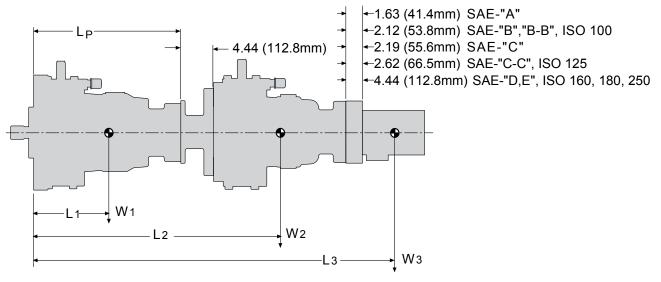


ISO


FOR P12, P200, P16 & P260 ONLY



FOR P12, P200, P16 & P260 ONLY


ISO

MAXIMUM PERMISSABLE BENDING MOMENT AT MOUNTING FLANGE

M={(L1•W1)+(L2•W2)+(L3•W3)---}

P16	P12	P09	P07	P05	
14400	10100	8300	6300	5000	
325	300	220	177	156	
10.4	8.6	8.5	8.0	7.0	
18.8	17.2	15.9	14.7	13.4	
P260	P200	P140	P110	P080	
1627	1141	938	712	565	
1446	1335	981	798	696	
264	218	216	203	178	
478	437	404	373	340	
	14400 325 10.4 18.8 P260 1627 1446 264	14400 10100 325 300 10.4 8.6 18.8 17.2 P260 P200 1627 1141 1446 1335 264 218	14400 10100 8300 325 300 220 10.4 8.6 8.5 18.8 17.2 15.9 P260 P200 P140 1627 1141 938 1446 1335 981 264 218 216	14400 10100 8300 6300 325 300 220 177 10.4 8.6 8.5 8.0 18.8 17.2 15.9 14.7 P260 P200 P140 P110 1627 1141 938 712 1446 1335 981 798 264 218 216 203	14400 10100 8300 6300 5000 325 300 220 177 156 10.4 8.6 8.5 8.0 7.0 18.8 17.2 15.9 14.7 13.4 P260 P200 P140 P110 P080 1627 1141 938 712 565 1446 1335 981 798 696 264 218 216 203 178

VALUES EXCEEDING MAXIMUM MOMENT MUST HAVE ADDITIONAL SUPPORT ON MOUNTED PUMP(S)

Rear drives ordering code options	
-----------------------------------	--

SAE

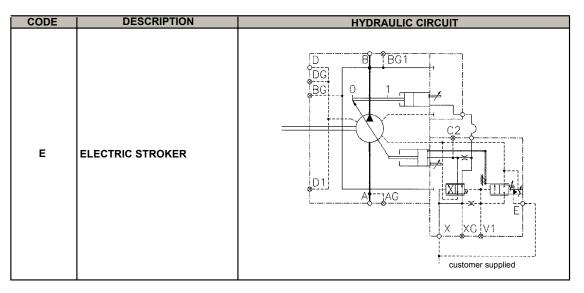
ISO & DIN mounting & coupling 5B4 160B4 180B4 180B4 180B4 180B4 180B4 200B4 224B4 250B4

					moun	ting & c	coupling	g						mour	ning & cou	pling			
Mounting	None / plugged	А	А	В	В	С	С	D	Е	100B4	125B4	160B4	180B4	180B4	180B4	180B4	200B4	224B4	250B4
coupling		А	В	В	B/B	С	CC	D/E	DE	K25N	K32N	K40N	K40N	K50N	DIN40-18	DIN50-24	K50N	K50N	K50N
P05 /P080	0 / M	А	G	В	Q	С	Ν	D	-	Z	Y	Х	Т	U	-	-	-	-	-
P07 /P110	0 / M	А	G	В	Q	С	Ν	D	-	Z	Y	Х	Т	υ	-	-	-	-	-
P09 /P140	0 / M	А	G	В	Q	С	Ν	D	-	Z	Y	Х	Т	U	-	-	-	-	-
P12 /P200	0 / M	А	G	В	Q	С	Ν	D	Е	Z	Y	Х	Т	U	-	-	W	R	-
P16/P260	0 / M	А	G	В	Q	С	Ν	D	Е	Z	Y	Х	Т	U	L	S	W	R	V
Dim. S	.88	1.6	53	2	.13	2.19	2.62	4.	44	2.13	2.63				4.44				
Dim. S	22,4	41	,4	5	4,0	55,6	66,6	11	2,7	54,0	66,8				112,7				

NOTE: Items in **bold** are SAE version and inches, *Italic* dimensions are in millimeters.

For more detailed information refer to the individual pump installation drawings. These are available on CD. Contact your nearest sales representative or distributor.

CODE	DESCRIPTION	HYDRAULIC CIRCUIT
с	PRESSURE COMPENSATOR	
L	LOAD SENSING CONTROL	LOAD CONTROL VALVE D B B B G C C C C C C C C C C C C C C C C
J & K	TORQUE LIMITER WITH PRESSURE COMPENSATOR	


т	YPICAL PERFORMANCE		DESC	RIPTION OF O	PERATION	
	n compensating pressure 250 PSI, r, pilot flow 115 in³/min. (1.9 L/min).	plus a pisto stroking cyl the pump of valve open sator spool the stroking When the p pilot valve offset positi	on pushes the stroi inder is connected perating pressure s and a pressure to move against t g cylinder. The pu oump operating pro- will close and the ion, connecting the ne stroking piston	king piston and the to the case drain reaches the comp lrop is created over ne spring force, di mp will destroke to essure decreases compensator spoo e stroking cylinder		Ill stroke. The tor spool. When setting, the pilot ing the compen- narge pressure to ssure. Insator setting, the spring force to its ng plus the piston
	Pressure	P16/P260		.10	0.15	
Flow	Pressure	sator pilot f the pressur pressure. I compensat above the I The custom flow control	low. The load sense on the vent port By adjusting the di or establishes pun oad pressure. her valve, by mete	sing port detects the of the compensate frerential pressure poutlet pressure ring pump flow at ies only the require	e to isolate the loa ne load pressure a or at 50 psi, 3,4 b across the compe at 200 to 350 psi, a fixed pressure d red flow, at 200 to	nd establishes ar above the load ensator spool, the 13,8 to 24,1 bar rop, becomes a
Ì		of the spoo As system shifting the sure and sp overcomes pump begin	I is connected to t pressure increase spool to allow the oring forces on the the pressure plus as to reduce displa	he vent port of the s, force on the spo flow to bleed off to compensator spo spring force the c cement.	ton cap, full stroke compensator, the pol overcomes the o case. This main ol. Once the syst ompensator spool	other to case. spring force tains the pres- em pressure shifts and the
Flow		compensat are inverse The slope of pressure a ond spring cover a ran	or spring load at the ly related. of the pressure/stru- single spring is in joins the first to in ge of torques, two	his new position. The curve is detern contact with the spore ase the rate of versions are offer	ssure is required in Thereby, pressure mined by the sprin pool. As pressure change of pressure red, "J" for low torr rolled by the comp	and pump stroke g rate. At low increases, a sec- e vs. stroke. To que values and
		Torque v				verride controls
	Pressure	Model	J c Min. Ibin. Nm	r V Max. Ibin. Nm	K o Min. Ibin. Nm	or W Max. Ibin. Nm
		P05/080 P07/110 P09/140 P12/200 P16/260	800 90 1100 124 1400 158 1850 209 2500 283	1500 170 1850 209 2200 249 3400 384 6000 678	1500 170 1850 209 2200 249 3400 384 6000 678	3500 396 5300 599 6000 678 8000 905 10000 1129

CODE	DESCRIPTION	HYDRAULIC CIRCUIT
V & W	TORQUE LIMITER WITH LOAD SENSING PRESSURE COMPENSATOR	LOAD CONTROL VALVE D B B G B G C C C C C C C C C C C C C C C
R	MANUAL ROTARY SERVO	D BG D1 A A X X G V D1 X X G V D1
н	HYDRAULIC STROKER	

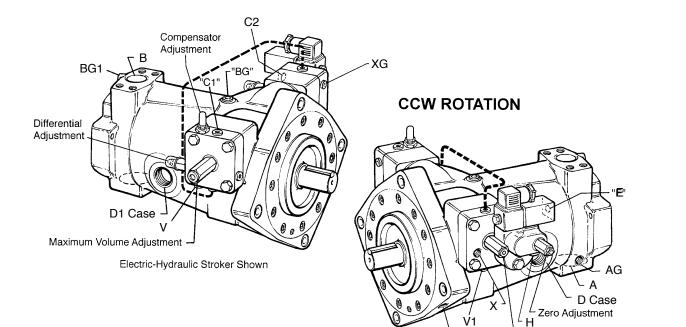
T	YPICAL PERFORMANCE		D	ESCRIPT		PERATION	1		
	THORE FERI ORMANCE						l		
A A A A A A A A A A A A A A A A A A A		The control of exceed the t given setting flow; therefor The V contro pressure cor	V control offers the operates as a load orque limiter settin . A modulating va- re protecting any so of is for low torque mpensator of the li- the compensato	I sense up g. At this lve on the sensitive va and the V orque limit	to the point v point the torq vent line isol alves that ma V control is fo	where pressu que limiter des ates the load ay be in the sy or high torque	re and flow strokes the from comp /stem.	r cause pump to ensator control c	torque to o the pilot of the
FLOW									
		T	aluaa fan Tan		4 - T -			ulala a	
	A A	Iorque v	alues for Tore		ter and To		K or V		ontrois
				J or V					
	PRESSURE	Model	Min. Ibin. Nm	lbii	Max. n. Nm	Min lbin.		Ma lbin.	ax. Nm
		P05/080	800 90	150			170	3500	396
		P07/110 P09/140	1100 124 1400 158	185			209 249	5300 6000	599 678
		P12/200	1850 209	340		_	384	8000	905
		P16/260	2500 283	600	0 678	6000	678	10000	1129
Maximun	shaft rotation	stroke side contains a pilot flow oi the control ton, causin Backlash is by servo pr 1500 psi, 1	Servo : 080 P07/	rotated, is opened our-way 'r r-way val direction pring loa pressure shaft rot 110 (2°	causes line. d or blocked valve. The s live connect to follow the ding on the a and servo tation, zer P09/140 52-57°	ar motion o d by a sleev sleeve is co s servo and e motion of e linkages. S o flow. Maxi P12/2 60-65	n a spool. e. This pa nnected b I tank to th the spool. Stroke tim mum serv troke 00 P 5° 6	The space of the s	bool meters age to rol pis- ected sure is
Flow		side. The I mechanism coupled to zero displa in proportic to pilot pres	hydraulic stroke n of the rotary s the spool. The cement. Pilot p n to pressure, t ssure. Typical h bilot pressure in 1500 psi, 103	r is obtair ervo confi piston is s ressure a hereby ca ysteresis the contri par.	ned by repla iguration wi spring biase applied to th ausing the p is 7%. rol port is 10	acing the ro th a spring ed to initially ne piston ca bump to go 000 psi, 70	tary servo loaded hy stroke the uses the s on stroke bar. Maxi	shaft a draulic e pump pool to in prop	and cam piston to o move portion
				<u>stroke</u> 05/080	r signal pi P07/110	ressure ve P09/140		D16	6/260
		Zoro of-					P12/200		
		zero stro		50 3,4	50 3,4	<u>50</u> 3,4	50 3,4		50 3,4
'	Signal pressure	full stro		225	232	245	272		83
		full strok	•	15,4	16	16,9	18,8		9,5
				70,7	10	10,9	10,0	1	5,0

PRIMARY CONTROL OPTIONS MAXIMUM VOLUME SCREW code 1

HANDWHEEL MAXIMUM VOLUME STOP code 2 The standard maximum volume stop is an adjustment screw. To reduce volume, remove the plug on the end of the cover, loosen the cover, and turn the adjusting screw clockwise.

An optional handwheel maximum volume stop is available on the pressure compensator, load sensing and torque limiter controls. To reduce volume, loosen the locknut below the handwheel and turn the handwheel clockwise.

TYPICAL PERFORMANCE	DESCRIPTION OF OPERATION
Flow	The electric stroker consists of the hydraulic stroker with an electrically modulated pressure control valve mounted. Pump stroke may be controlled with an electrical signal which con trols the pressure to the control port of the hydraulic stroker. Servo pressure, not to exceed 1500 psi, (103 bar) is supplied to the inlet port on the electrically modulated pressure control valve. The Jupiter Driver card, S20-14078 or the Micro Proportional Driver plug, S20-14116 may be used to control the electric stroker. A 12 Volt coil is also available. Typical hysteresis 5%.
	Electrohydraulic stroker signal mA vs stroke
	P05/080 P07/110 P09/140 P12/200 P16/260
Signal mA	zero stroke mA, 24 vdc 175 175 175 175 175
	zero stroke mA, 12 vdc 350 350 350 350 350
	full stroke mA, 24 vdc 273 276 283 295 300
	full stroke mA, 12 vdc 546 552 566 590 600


CODE	DESCRIPTION	HYDRAULIC CIRCUIT
E1P H1P R1P	COMPENSATOR OVERRIDE	D D B B B B B C C C C C C C C C C C C C
E1J E1K H1J H1K R1J R1K	TORQUE LIMITER OVERRIDE, INCLUDING PRESSURE COMPENSATOR OVERRIDE	D D B B B B C D D D B B C D C C C C C C

			DESCF	RIPTION OF	OPERATI	ON	
Flow	The pressure side. It may or electrohyd compensator cylinder and ker. When s ry control fur be sufficient piston.	be installed lraulic strok override p blocks that ystem pres actions to co	d with any o ker). When orts system flow path to sure is belo ontrol pump	of the three p pressure ex pressure in o the servo, ow the comp o stroke. Co	position con acceeds com nto the off-st hydraulic o pensator ove ompensator	trols, (servo pensator se troke side of r electrohyd erride setting override pre	b, hydraulic, tting, the f the control lraulic stro- g, the prima- essure must
	RESE	PONSE TI	MES. sec	. at 800 ps	si (55 bar)	servo pre	essure
			ff stroke			troke time	
Pressure	P05/P80		0.06			.20	
	P07/P110		0.07			.20	
bar psi 5 180	P09/P140 P12/P200		0.06			.25	
b bar psi 180 7 2600 165 - 2200 900 7 2000 900 7 2000 900 7 2000 100 7 0 900 1100 1300 1500	P16/P260		0.10			.30	
	override dire opposite side	e, causing f					
Flow	setting is rea	iched.	BA1			e when the	
Flow				num torqu	ue limiter		torque limite
		override s		num torques a function	ue limiter on of serv		re
Pressure	Servo pressure (psi) 700	P05/080	P07/110	s a functio	ue limiter on of serv	o pressur	e Minimum torque Ibin
	Servo pressure (psi) 700 800	P05/080	ettings as P07/110 1800	s a function P09/140 1800	P12/200	o pressur P16/260 3100	e Minimum torque Ibin Ibin
Pressure	Servo pressure (psi) 700 800 1500 Servo pressure (bar)	P05/080	P07/110 1800 3500	s a function P09/140 1800 3400 P09/140	P12/200 2500 4800 P12/200	o pressur P16/260 3100 6200 P16/260	e Minimum torque Ibin Ibin Ibin Minimum torque
Pressure 180 - 2600 165 - 2200 165 - 2000 165 - 20	Servo pressure (psi) 700 800 1500 Servo pressure (bar) 48	P05/080 1400 2700 P05/080	P07/110 1800 3500 P07/110	s a function P09/140 1800 3400	P12/200 2500 4800	o pressur P16/260 3100 6200	e Minimum torque Ibin Ibin Ibin Minimum torque Nm
Pressure 180 - 2600 165 - 2400 165 - 24	Servo pressure (psi) 700 800 1500 Servo pressure (bar)	P05/080 1400 2700	P07/110 1800 3500	s a function P09/140 1800 3400 P09/140	P12/200 2500 4800 P12/200	o pressur P16/260 3100 6200 P16/260	e Minimum torque Ibin Ibin Ibin Minimum torque

HY28-2702-01/PRE/US Identification Ports and Adjustments

Electric-Hydraulic Stroker Shown

Minimum Volume Adjustment

DG

FLUID CONNECTIONS	
DESCRIPTION	
PORT A	INLET
PORT B	SYSTEM
PORT C1	OFF-STROKE CYL. GAGE
PORT C2	ON-STROKE CYL. GAGE
PORT D	CASE DRAIN
PORT D1	CASE DRAIN
PORT DG	DRAIN GAGE, AIR BLEED PORT
PORT AG	INLET GAGE
PORT BG	SYSTEM GAGE
PORT BG1	ALT. SYS. GAGE
PORT E	ELECTROHYDRAULIC STROKER SERVO SUPPLY
PORT H	HYDRAULIC STROKER SIGNAL
PORT LS	LOAD SENSING LINE
PORT V	COMPENSATOR, TORQUE LIMITER, LOAD SENSING VENT
PORT V	OVERRIDE COMP, OVERRIDE TORQUE LIMITER VENT
PORT V1	SERVO VENT
PORT X	SERVO SUPPLY
PORT XG	SERVO GAGE

mier pumps nple model code: P 16 H -02 R 1 *	-c	0	0		sed 5/1	shee 10/16
P P		-	-	-0	0	
lacement						
cc/rev. 080						
cu.in./rev. 07 8 cc/rev. 110						
cu.in./rev. 09						
9 cc/rev. 140 cu.in./rev. 12						
0 cc/rev. 200						
cu.in./rev. 16 2 cc/rev. 260						
e de la companya de la						
speed (>1800 RPM)(P16, P260, P12, P200, P09 & P140 only) H Speed (=/< 1800 rpm)(P16, P260, P12, P200, P09 & P140 only) Q						
Speed Stand-By Option (>1800 rpm)(P16, P260, P12, P200, P09 & P140 only) M						
Speed Stand-By Option (=/<1800 rpm)(P16, P260, P12, P200, P09 & P140 only) N P110, P05 & P080 leave blank Ieave blank						
t						
rd - SAE or ISO 2						
ed - SAE or ISO 3 ed - SAE high torque (P16 only) 5						
ed - DIN (metric pumps only) (DIN 40mm for sizes 080 & 110, DIN 50mm for sizes 140 & 200						
50mm for size 260) 6 ed - DIN (metric pumps only) (DIN 40mm for sizes 080 & 110, DIN 50mm for sizes 140 & 200						
60mm for size 260) 7						
ed - DIN (DIN 60mm for size 200 only) 8 ed - DIN (DIN 60mm for size 200 only) 9						
tion						
kwise R Iter-clockwise L						
S						
e (Buna-N) 1 (pump will be unpainted unless otherwise specified)* 4						
rocarbon (Viton) 5						
gn letter (assigned by manufacturer) * ary controls	J I					
pensator	-C					
sensing compensator (50 PSI pressure drop)	-L					
I sensing compensator (200 PSI pressure drop) ry servo	-M -R					
aulic servo	-H					
rro-hydraulic servo** torque limiter	-Е -Ј					
torque limiter	-K					
I sensing (L) + low torque limiter (J) I sensing (L) + high torque limiter (K)	-V -W					
sensing (M) + low torque limiter (J)	-Y					
sensing (M) + high torque limiter (K) ary control options	-Z					
volume screw without indicator		1				
wheel max. volume control without indicator (not available w/ R, H & E primary controls) volume screw with LVDT**		2				
volume screw with mechanical cam angle indicator		5				
wheel max. volume control with LVDT (not available w/ R, H & E primary controls)** wheel max. volume control with mechanical cam angle indicator (not available w/ R, H & E primary controls)		7 8				
inder max. volume controls with mechanical cam angle indicator (not available w/ k, n & E primary controls)		0				
e pensator override (for E, H & R primary controls only)			0 P			
torque limiter override (for E, H & R primary controls only)			J			
torque limiter override (for E, H & R primary controls only) rnal drive			К			
				-0		
blanking plate A (SAE 82-2) with SAE-A (SAE 16-4) coupling				-M -A		
A (SAE 82-2) with SAE-B (SAE 22-4) coupling				-G		
B (SAE 101-2 & SAE 101-4) with SAE-B (SAE 22-4) coupling				-B -Q		
B (SAE 101-2 & SAE 101-4) with SAE-BB (SAE 25-4) coupling C (SAE 127-2 & SAE 127-4) with SAE-C (SAE 32-4) coupling				-Q -C		
C (SAE 127-2 & SAE 127-4) with SAE-CC (SAE 38-4) coupling				-N -D		
D (SAE 152-2 & SAE 152-4) with SAE-D & SAE-E (SAE 44-4) coupling E (SAE 165-2 & SAE 165-4) with SAE-D & SAE-E (SAE 44-4) coupling (P12/200 and P16/260 only)				-D -E		
180 B4HW Flange, K40N coupling				-T		
180 B4HW Flange, K50N coupling 180 B4HW Flange, DIN 40-18 coupling (P16/260 only)				-U -L		
180 B4HW Flange, DIN 50-24 coupling (P16/260 only)				-S		
224 B4HW Flange, K50N coupling (P12/200 and P16/260 only) 250 B4HW Flange, K50N coupling (P16/260 only)				-R -V		
200 B4HW Flange, K50N coupling (P12/200 and P16/260 only)				-W		
160 B4HW Flange, K40N coupling 125 B4HW Flange, K32N coupling				-X -Y		
125 B4rrw Flange, K32N coupling				-1 -Z		
rnal mounting						
xternal pump mounted rnal pump mounted (requires special modification "-M2")(must be separately specified)					0	
clai modification						
aint* ed black						-NI -PE
						-PC
(APPROVED PUMP		2.1				
K APPROVED PUMP r special modification (examples: bronze caged barrel bearing for low viscosity fluids, mechanical shaft seal, hydrostatic cam, tandem p wable controls**	umps, etc.	.)*				-M

- * ATEX NOTES: THESE OPTIONS ARE NOT APPROVED FOR ATEX APPLICATIONS
- ** THE FOLLOWING CONTROL OPTIONS ARE NOT AVAILABLE FOR ATEX 2014/34/EU: Electro-Hydraulic Servo(E**), and use of LVDT position feedback (*4* or *7*)

The items described in this document and other documents and descriptions provided by Parker Hannifin Corporation, Hydraulics Group, and its authorized distributors ("Seller") are hereby offered for sale at prices to be established by Seller. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any item described in its document, when communicated to Seller verbally, or in writing, shall constitute acceptance of this offer. All goods or work described will be referred to as "Products".

Terms and Conditions. Seller's willingness to offer Products, or accept an order for Products, to or from Buyer is expressly conditioned on Buyer's assent to these Terms and Conditions and to the terms and conditions found on-line at www.parker.com/ saleterms/. Seller objects to any contrary or additional term or condition of Buyer's order or any other document issued by Buyer.

2. Price Adjustments; Payments. Prices stated on the reverse side or preceding pages of this document are valid for 30 days. After 30 days, Seller may change prices to reflect any increase in its costs resulting from state, federal or local legislation, price increases from its suppliers, or any change in the rate, charge, or classification of any carrier. The prices stated on the reverse or preceding pages of this document do not include any sales, use, or other taxes unless so stated specifically. Unless otherwise specified by Seller, all prices are F.O.B. Seller's facility, and payment is due 30 days from the date of invoice. After 30 days, Buyer shall pay interest on any unpaid invoices at the rate of 1.5% per month or the maximum allowable rate under applicable law.

3. Delivery Dates; Title and Risk; Shipment. All delivery dates are approximate and Seller shall not be responsible for any damages resulting from any delay. Regardless of the manner of shipment, title to any products and risk of loss or damage shall pass to Buyer upon tender to the carrier at Seller's facility (i.e., when it's on the truck, it's yours). Unless otherwise stated, Seller may exercise its judgment in choosing the carrier and means of delivery. No deferment of shipment at Buyers' request beyond the respective dates indicated will be made except on terms that will indemnify, defend and hold Seller harmless against all loss and additional expense. Buyer shall be responsible for any additional shipping charges incurred by Seller due to Buyer's changes in shipping, product specifications or in accordance with Section 13, herein.

4. Warranty. Seller warrants that the Products sold hereunder shall be free from defects in material or workmanship for a period of eighteen months from the date of delivery to Buyer. The prices charged for Seller's products are based upon the exclusive limited warranty stated above, and upon the following disclaimer: DISCLAIMER OF WARRANTY: THIS WARRANTY COMPRISES THE SOLE AND ENTIRE WARRANTY PERTAINING TO PRODUCTS PROVIDED HEREUNDER. SELLER DISCLAIMS ALL OTHER WARRANTIES, EXPRESS AND IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

5. Claims; Commencement of Actions. Buyer shall promptly inspect all Products upon delivery. No claims for shortages will be allowed unless reported to the Seller within 10 days of delivery. No other claims against Seller will be allowed unless asserted in writing within 60 days after delivery or, in the case of an alleged breach of warranty, within 30 days after the date within the warranty period on which the defect is or should have been discovered by Buyer. Any action based upon breach of this agreement or upon any other claim arising out of this sale (other than an action by Seller for any amount due to Seller from Buyer) must be commenced within thirteen months from the date of tender of delivery by Seller or, for a cause of action based upon an alleged breach of warranty, within thirteen months from the date of tender of so should have been discovered by Buyer.

6. LIMITATION OF LIABILITY. UPON NOTIFICATION, SELLER WILL, AT ITS OPTION, REPAIR OR REPLACE A DEFECTIVE PRODUCT, OR REFUND THE PURCHASE PRICE. IN NO EVENT SHALL SELLER BE LIABLE TO BUYER FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF, OR AS THE RESULT OF, THE SALE, DELIVERY, NON-DELIVERY, SERVICING, USE OR LOSS OF USE OF THE PRODUCTS OR ANY PART THEREOF, OR FOR ANY CHARGES OR EXPENSES OF ANY NATURE INCURRED WITHOUT SELLER'S WRITTEN CONSENT, EVEN IF SELLER HAS BEEN NEGLIGENT, WHETHER IN CONTRACT, TORT OR OTHER LEGAL THEORY. IN NO EVENT SHALL SELLER'S LIABILITY UNDER ANY CLAIM MADE BY BUYER EXCEED THE PURCHASE PRICE OF THE PRODUCTS.

7. Contingencies. Seller shall not be liable for any default or delay in performance if caused by circumstances beyond the reasonable control of Seller.

8. User Responsibility. The user, through its own analysis and testing, is solely responsible for making the final selection of the system and Product and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application and follow applicable industry standards and Product information. If Seller provides Product or system options, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the Products or systems.

9. Loss to Buyer's Property. Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.

10. Special Tooling. A tooling charge may be imposed for any special tooling, including without limitation, dies, fixtures, molds and patterns, acquired to manufacture Products. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the Products, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.

11. Buyer's Obligation; Rights of Seller. To secure payment of all sums due or otherwise, Seller shall retain a security interest in the goods delivered and this agreement shall be deemed a Security Agreement under the Uniform Commercial Code. Buyer authorizes Seller as its attorney to execute and file on Buyer's behalf all documents Seller deems necessary to perfect its security interest. Seller shall have a security interest in, and lien upon, any property of Buyer in Seller's possession as security for the payment of any amounts owed to Seller by Buyer.

12. Improper Use and Indemnity. Buyer shall indemnify, defend, and hold Seller harmless from any claim, liability, damages, lawsuits, and costs (including attorney fees), whether for personal injury, property damage, patent, trademark or copyright infringement or any other claim, brought by or incurred by Buyer, Buyer's employees, or any other person, arising out of: (a) improper selection, improper application or other misuse of Products purchased by Buyer from Seller; (b) any act or omission, negligent or otherwise, of Buyer; (c) Seller's use of patterns, plans, drawings, or specifications furnished by Buyer to manufacture Product; or (d) Buyer's failure to comply with these terms and conditions. Seller shall not indemnify Buyer under any circumstance except as otherwise provided.

13. Cancellations and Changes. Orders shall not be subject to cancellation or change by Buyer for any reason, except with Seller's written consent and upon terms that will indemnify, defend and hold Seller harmless against all direct, incidental and consequential loss or damage. Seller may change product features, specifications, designs and availability with notice to Buyer.

14. Limitation on Assignment. Buyer may not assign its rights or obligations under this agreement without the prior written consent of Seller.

15. Entire Agreement. This agreement contains the entire agreement between the Buyer and Seller and constitutes the final, complete and exclusive expression of the terms of the agreement. All prior or contemporaneous written or oral agreements or negotiations with respect to the subject matter are herein merged.

16. Waiver and Severability. Failure to enforce any provision of this agreement will not waive that provision nor will any such failure prejudice Seller's right to enforce that provision in the future. Invalidation of any provision of this agreement by legislation or other rule of law shall not invalidate any other provision herein. The remaining provisions of this agreement will remain in full force and effect.

17. Termination. This agreement may be terminated by Seller for any reason and at any time by giving Buyer thirty (30) days written notice of termination. In addition, Seller may by written notice immediately terminate this agreement for the following: (a) Buyer commits a breach of any provision of this agreement (b) the appointment of a trustee, receiver or custodian for all or any part of Buyer's property (c) the filing of a petition for relief in bankruptcy of the other Party on its own behalf, or by a third party (d) an assignment for the benefit of creditors, or (e) the dissolution or liquidation of the Buyer.
18. Governing Law. This agreement and the sale and delivery of all Products here-under shall be deemed to have taken place in and shall be governed and construed and wholly performed therein and without regard to conflicts of laws principles. Buyer irrevocably agrees and consents to the exclusive jurisdiction and venue of the courts of Cuyahoga County, Ohio with respect to any dispute, controversy or claim arising out of or relating to this agreement. Disputes between the parties shall not be settled by arbitration unless, after a dispute has arisen, both parties expressly agree in writing to arbitrate the disoute.

19. Indemnity for Infringement of Intellectual Property Rights. Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Section. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets ("Intellectual Property Rights"). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on an allegation that a Product sold pursuant to this Agreement infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If a Product is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and option, procure for Buyer the right to continue using the Product, replace or modify the Product so as to make it noninfringing, or offer to accept return of the Product and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to Products delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any Product sold hereunder. The foregoing provisions of this Section shall constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights

20. Taxes. Unless otherwise indicated, all prices and charges are exclusive of excise, sales, use, property, occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of Products.

21. Equal Opportunity Clause. For the performance of government contracts and where dollar value of the Products exceed \$10,000, the equal employment opportunity clauses in Executive Order 11246, VEVRAA, and 41 C.F.R. §§ 60-1.4(a), 60-741.5(a), and 60-250.4, are hereby incorporated.

North America

Industrial USA Chicago Region Naperville, IL Tel: (630) 964 0796

Great Lakes Region Fairlawn, OH Tel: (330) 670 2680

Northeast Region Lebanon, NJ Tel: (908) 236 4121

Pacific Region Buena Park, CA Tel: (714) 228 2509

Southern Region Alpharetta, GA Tel: (770) 619 9767

Canada Milton, Ontario Tel: (905) 693 3000

México Toluca, Edo. de México Tel: (52) 72 2275 4200

Mobile

USA Global Mobile Lincolnshire, IL Tel: (847) 821 1500

Central Region Lincolnshire, IL Tel: (847) 821 1500

Eastern Region North Canton, OH Tel: (330) 284 3355

Midwest Region Hiawatha, IA Tel: (319) 393 1221

Southern Region Aledo, TX

Tel: (817) 441 1794 *Western Region* Buena Park, CA

Tel: (714) 228 2509 Canada Milton, Ontario Tel: (905) 693 3000

México Apodaca, N.L. Tel: (52) 81 8156 6000

Truck

USA *Eastern Region* Cleveland, OH Tel: (440) 519 1125

Western Region San Ramon, CA Tel: (925) 735 9573

Canada Milton, Ontario Tel: (905) 693 3000

México Apodaca, N.L. Tel: (52) 81 8156 6000

Europe

Austria Wiener Neustadt Tel: (43) 2622 23501 0 Belgium Nivelles Tel: (32) 67 280 900 Czech Republic and Slovakia Klecany Tel: (420) 284 083 111

Denmark Ballerup Tel: (45) 4356 0400

Finland Vantaa Tel: (358) 20 753 2500

France Contamine-sur-Arve Tel: (33) 4 50 25 80 25

Germany Kaarst Tel: (49) 2131 4016 0

Greece Athens Tel: (30) 210 933 6450

Hungary Budapest Tel: (36) 1 220 4155 Ireland County Dublin, Baldonnell

Tel: (353) 1 466 6370 Italy

Corsico, Milano

Tel: (39) 02 45 19 21

The Netherlands Oldenzaal Tel: (31) 541 585000

Norway Ski Tel: (47) 64 91 10 00

Poland Warsaw Tel: (48) 22 57 32400

Portugal Leca da Palmeira Tel: (351) 22 999 7360 Romania

Bucharest Tel: (40) 21 252 1382

Russia Moscow Tel: (7) 495 580 9145 Slovenia Novo Mesto

Tel: (386) 7 337 6650 Spain Madrid Tel: (34) 91 675 7300

Sweden Spanga Tel: (46) 8 597 95000

Ukraine Kiev Tel: (380) 44 494 2731 United Kingdom Warwick, Tel: (44) 1926 317878

Asia Pacific

Australia Castle Hill Tel: (61) 2 9634 7777

China Beijing Tel: (86) 10 6561 0520 Shanghai Tel: (86) 21 5031 2525

Hong Kong Tel: (852) 2428 8008

India Mahape, Navi Mumbai Tel: (91) 22 5613 7081

Korea Seoul Tel: (82) 2 559 0400

Malaysia Subang Jaya Tel: (60) 3 5638 1476

New Zealand Mt. Wellington Tel: (64) 9 574 1744

Japan Tokyo Tel: (81) 3 6408 3900

Singapore Jurong Town Tel: (65) 6 887 6300

Taiwan Taipei Tel: (886) 2 2298 8987

Thailand Bangkok Tel: (662) 717 8140

Middle East

United Arab Emirates Abu Dhabi Tel: (971) 2 678 8587

Latin America

Pan American Division Miami, FL Tel: (305) 470 8800

Argentina Buenos Aires Tel: (54) 33 2744 4129

Brazil Cachoeirinha RS Tel: (55) 51 3470 9144

Venezuela Caracas Tel: (58) 212 238 5422

Africa

South Africa Kempton Park Tel: (27) 11 961 0700

© 2016 Parker Hannifin Corporation, all rights reserved

Parker Hannifin Corporation **Hydraulic Pump Division** 14249 Industrial Parkway Marysville, OH 43040 USA phone 937 644 4435 fax 937 642 3639 www.parker.com/hydraulicpump This literature replaces ALL previous literature HY28-2702-01/PRE/US